Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EBioMedicine ; 92: 104608, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-2326835

RESUMEN

BACKGROUND: SARS-CoV-2 is a single-stranded positive-sense RNA virus. Several negative-sense SARS-CoV-2 RNA species, both full-length genomic and subgenomic, are produced transiently during viral replication. Methodologies for rigorously characterising cell tropism and visualising ongoing viral replication at single-cell resolution in histological sections are needed to assess the virological and pathological phenotypes of future SARS-CoV-2 variants. We aimed to provide a robust methodology for examining the human lung, the major target organ of this RNA virus. METHODS: A prospective cohort study took place at the University Hospitals Leuven in Leuven, Belgium. Lung samples were procured postmortem from 22 patients who died from or with COVID-19. Tissue sections were fluorescently stained with the ultrasensitive single-molecule RNA in situ hybridisation platform of RNAscope combined with immunohistochemistry followed by confocal imaging. FINDINGS: We visualised perinuclear RNAscope signal for negative-sense SARS-CoV-2 RNA species in ciliated cells of the bronchiolar epithelium of a patient who died with COVID-19 in the hyperacute phase of the infection, and in ciliated cells of a primary culture of human airway epithelium that had been infected experimentally with SARS-CoV-2. In patients who died between 5 and 13 days after diagnosis of the infection, we detected RNAscope signal for positive-sense but not for negative-sense SARS-CoV-2 RNA species in pneumocytes, macrophages, and among debris in the alveoli. SARS-CoV-2 RNA levels decreased after a disease course of 2-3 weeks, concomitant with a histopathological change from exudative to fibroproliferative diffuse alveolar damage. Taken together, our confocal images illustrate the complexities stemming from traditional approaches in the literature to characterise cell tropism and visualise ongoing viral replication solely by the surrogate parameters of nucleocapsid-immunoreactive signal or in situ hybridisation for positive-sense SARS-CoV-2 RNA species. INTERPRETATION: Confocal imaging of human lung sections stained fluorescently with commercially available RNAscope probes for negative-sense SARS-CoV-2 RNA species enables the visualisation of viral replication at single-cell resolution during the acute phase of the infection in COVID-19. This methodology will be valuable for research on future SARS-CoV-2 variants and other respiratory viruses. FUNDING: Max Planck Society, Coronafonds UZ/KU Leuven, European Society for Organ Transplantation.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , ARN Viral , Estudios Prospectivos , Pulmón
2.
J Med Virol ; 95(4): e28736, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2305162

RESUMEN

Rates and modulators of SARS-CoV-2 vaccine nonresponse and breakthrough infections remain unclear in serially vaccinated transplant recipients. In a prospective, mono-centric, observational study, 1878 adult solid organ and hematopoietic cell transplant recipients, with prior SARS-CoV-2 vaccination, were included between March 2021 and February 2022. SARS-CoV-2 anti-spike IgG antibodies were measured at inclusion and details on SARS-CoV-2 vaccine doses and infection were collected. No life-threatening adverse events were reported after a total of 4039 vaccine doses. In transplant recipients without prior SARS-CoV-2 infection (n = 1636), antibody response rates ranged widely, from 47% in lung transplant to 90% in liver transplant and 91% in hematopoietic cell transplant recipients after third vaccine dose. Antibody positivity rate and levels increased after each vaccine dose in all types of transplant recipients. In multivariable analysis, older age, chronic kidney disease and daily dose of mycophenolate and corticosteroids were negatively associated with antibody response rate. Overall rate of breakthrough infections was 25.2% and mainly (90.2%) occurred after third and fourth vaccine dose. Lung transplant recipients had the highest rates of severe breakthrough infection (10.5%) and death (2.5%). In multivariable analysis, older age, daily dose of mycophenolate and corticosteroids were associated with severe breakthrough infection. Transplant recipients with infection before first vaccine dose (n = 160) had higher antibody response rates and levels after each vaccine dose, and a significantly lower overall rate of breakthrough infections compared to those without prior infection. Antibody response after SARS-CoV-2 vaccination and rate of severe breakthrough infections vary largely between different transplant types and are modulated by specific risk factors. The observed heterogeneity supports a tailored approach against COVID-19 in transplant recipients.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Anticuerpos Antivirales , Formación de Anticuerpos , Infección Irruptiva , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Inmunoglobulina G , Inmunosupresores/efectos adversos , Estudios Prospectivos , SARS-CoV-2 , Receptores de Trasplantes
3.
J Thorac Cardiovasc Surg ; 165(1): 301-326, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2262335

RESUMEN

OBJECTIVE: The use of mechanical circulatory support (MCS) in lung transplantation has been steadily increasing over the prior decade, with evolving strategies for incorporating support in the preoperative, intraoperative, and postoperative settings. There is significant practice variability in the use of these techniques, however, and relatively limited data to help establish institutional protocols. The objective of the AATS Clinical Practice Standards Committee (CPSC) expert panel was to review the existing literature and establish recommendations about the use of MCS before, during, and after lung transplantation. METHODS: The AATS CPSC assembled an expert panel of 16 lung transplantation physicians who developed a consensus document of recommendations. The panel was broken into subgroups focused on preoperative, intraoperative, and postoperative support, and each subgroup performed a focused literature review. These subgroups formulated recommendation statements for each subtopic, which were evaluated by the entire group. The statements were then developed via discussion among the panel and refined until consensus was achieved on each statement. RESULTS: The expert panel achieved consensus on 36 recommendations for how and when to use MCS in lung transplantation. These recommendations included the use of veno-venous extracorporeal membrane oxygenation (ECMO) as a bridging strategy in the preoperative setting, a preference for central veno-arterial ECMO over traditional cardiopulmonary bypass during the transplantation procedure, and the benefit of supporting selected patients with MCS postoperatively. CONCLUSIONS: Achieving optimal results in lung transplantation requires the use of a wide range of strategies. MCS provides an important mechanism for helping these critically ill patients through the peritransplantation period. Despite the complex nature of the decision making process in the treatment of these patients, the expert panel was able to achieve consensus on 36 recommendations. These recommendations should provide guidance for professionals involved in the care of end-stage lung disease patients considered for transplantation.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Trasplante de Pulmón , Cirugía Torácica , Procedimientos Quirúrgicos Torácicos , Humanos , Consenso , Trasplante de Pulmón/efectos adversos , Trasplante de Pulmón/métodos , Procedimientos Quirúrgicos Torácicos/métodos , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos
4.
Cardiovasc Res ; 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: covidwho-2256625

RESUMEN

AIMS: SARS-CoV-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage and perturbed hemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. METHODS AND RESULTS: We performed single nucleus RNA-seq (snRNA-seq) on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs and 12 controls. The vascular fraction, comprising 38,794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137,746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. CONCLUSIONS: This study uncovered novel insights into the abundance, expression patterns and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions. TRANSLATIONAL PERSPECTIVE: While assessing clinical and molecular characteristics of severe and lethal COVID-19 cases, the vasculature's undeniable role in disease progression has been widely acknowledged. COVID-19 lung pathology moreover shares certain clinical features with late-stage IPF - yet an in-depth interrogation and direct comparison of the endothelium at single-cell level in both conditions is still lacking. By comparing the transcriptomes of ECs from lungs of deceased COVID-19 patients to those from IPF explant and control lungs, we gathered key insights the heterogeneous composition and potential roles of ECs in both lethal diseases, which may serve as a foundation for development of novel therapeutics.

5.
Immun Inflamm Dis ; 10(4): e603, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1739167

RESUMEN

Point-of-care tests may play a valuable role in reducing the risk of donor-derived SARS-CoV-2 transmission in lung transplantation.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pulmón , Tórax
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA